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SUMMARY 

A multigrid acceleration technique developed for solving the three-dimensional Navier-Stokes equations for 
subsonicjtransonic flows has been extended to supersonic/hypersonic flows. An explicit multistage 
Runge-Kutta type of time-stepping scheme is used as the basic algorithm in conjunction with the multigrid 
scheme. Solutions have been obtained for a blunt conical frustum at Mach 6 to demonstrate the applicability 
of the multigrid scheme to high-speed flows. Computations have also been performed for a generic 
High-speed Civil Transport configuration designed to cruise at Mach 3. These solutions demonstrate both 
the efficiency and accuracy of the present scheme for computing high-speed viscous flows over configura- 
tions of practical interest. 
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INTRODUCTION 

During the last decade or so, significant progress has been made in the field of Computational 
Fluid Dynamics (CFD) to have an impact on the design and analysis of aerodynamic configura- 
tions. Solutions of the Euler (inviscid) equations for essentially complete aircraft configura- 
t i o n ~ ' - ~  and the solutions of the Navier-Stokes equations for high Reynolds number, viscous, 
transonic flows over aircraft components are now available in the open It is 
noteworthy that most of the efficient numerical schemes for solving aerodynamic flows rely on 
multigrid acceleration technique', *, to enhance the convergence rate. The multigrid-based 
schemes have the desirable property that the number of iterations required to achieve a steady- 
state solution is nearly independent of the mesh size for a given class of problems. Thus one can 
achieve essentially grid-converged, steady-state solutions, even for the numerically demanding 
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problem of high Reynolds number, transonic, viscous flow over realistic aerodynamic configura- 
tions with a reasonable amount of computer  resource^.^ 

Despite the progress achieved in solving transonic flows, the development of CED methods for 
supersonic/hypersonic flows seems to be lagging behind at the present time. With the current 
interest in high-speed vehicles such as the High-speed Civil Transport (HSCT) and the National 
Aero-space Plane (NASP), it is imperative that efficient computational algorithms be developed 
for high-speed flow regimes. In Reference 10 it is shown that central difference schemes can be 
used for solving inviscid, high-speed flows in conjunction with standard multigrid acceleration 
techniques that were originally developed for low-speed flows. Difficulties that some researchers 
have had with multigrid for high speed flows are due mainly to the non-smoothness of the flux 
limiters rather than the deficiencies in the multigrid strategy. Nevertheless, we stress that there is 
very little theoretical work in the use of multigrid for supersonic and hypersonic flows. In this 
paper, we demonstrate further progress in the use of a multigrid based central difference scheme. 
We present several results for three dimensional viscous problems that demonstrate the accuracy 
and efficiency of the proposed method for high-speed flows. 

GOVERNING EQUATIONS AND NUMERICAL METHODS 

The basic equations under consideration here are the unsteady Navier-Stokes equations. These 
are specialized to a body-fitted coordinate system (<, q, l), where 5, q, and [ represent the 
streamwise, normal, and spanwise co-ordinates, respectively. The q co-ordinate lines are nearly 
orthogonal to the solid surface. Since the dominant viscous effects for high-Reynolds-number 
turbulent flows arise from viscous diffusion normal to the body surface, a thin-layer assumption is 
employed here by retaining only the viscous diffusion terms in the ?-direction. These equations 
can be written in the conservation law form as 

where the dependent variable vector U is given by the relation 

In equation (l), F ,  G, G, and H are the flux vectors, and J is the Jacobian of the transformation. 
The complete forms of these quantities are readily available in Reference 9. 

A pseudo time-stepping scheme based on a Runge-Kutta scheme", l 2  is used for integrating 
the time-dependent equations to steady state and as a smoother in the multigrid scheme. For 
convenience, let us first write the discretized form of the governing equations in the following 
operator notation: 

d 
dt - ( J -  U )  + Q( v)  - D( U )  = o (3) 

where Q contains all the convective and viscous fluxes and D represents the artificial dissipative 
fluxes. 
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Since our primary interest here is to obtain solutions for viscous flows via the Navier-Stokes 
equations, both the diffusion and the convective terms are important in contrast with the Euler 
equations where convective terms are dominant. Therefore, it is preferable to employ a scheme 
that has a larger stability bound along the real axis in addition to good stability properties along 
the imaginary axis. Based on the Fourier stability analysis of a one-dimensional model problem, 
the five-stage Runge-Kutta scheme proposed by Jameson,' with 3 evaluations of the dissipative 
operator at the first, third, and fifth stages, appears to be very attractive and is employed in the 
present work. The convergence to steady state is enhanced via the use of local time-stepping and 
implicit residual smoothing techniques,' ' , 12  with the coefficients of the residual smoothing 
computed in the manner described by Vatsa and Wedan.' 

ARTIFICIAL DISSIPATION MODEL 

The basic artificial dissipation model used in this study is patterned after the work of Jameson, 
Schmidt and Turkel" and of Jameson and Baker" for 2-D and 3-D Euler equations respectively, 
and modified later by Vatsa and Wedan' for 3-D Navier-Stokes equations. In order to discuss 
the modifications required for supersonic/hypersonic flows, let us first examine the dissipation 
terms in the i-direction: 

In the above expression, ,Ii+ l jz ,  j , k  is the modified eigenvalue scaling factor' and the coefficients 
d2) and d4) are related to the pressure gradient as follows: 

where the coefficients and d4) are set equal to 1/2 and 1/64, respectively. The term v depends 
on the pressure gradient and is modified to give a TVD variation of the shock switch14 in the 
following manner: 

(6) 

Note that by setting w = 1, we can recover the shock switch that has been used in earlier studies 
for computing transonic flows.9311 - l 3  For supersonic and hypersonic flows, where shocks are 
much stronger, we use o = 1/2. The expressions for the dissipation terms in the j and k directions 
are derived in a similar manner. 

In Reference 15 it is shown that for transonic flows one should choose o-1, since smaller 
values of o result in excessively smeared shocks. It is possible to choose o adaptively depending 
on the shock strength so that an appropriate value of o is used for the entire Mach number range. 
For the hypersonic flows considered in this study, such a strategy was found to have no clear 
advantage over a constant o of 1/2. 

V .  = / P i  + 1, j, k - 2 p i ,  j . k  + P i -  1, j ,  kl  

( l  - w ) ( l  P i +  1 .  j , k  - P i ,  j ,  kl  + I P i ,  j , k - p i -  1, j ,  k l )  + 1. j ,  k + 2 P i ,  j ,  k + P i -  1 ,  j ,  k )  ' 

EVALUATION O F  TIME STEP 

It is very important to estimate the allowable time-step as accurately as possible in order to 
construct a robust time-stepping scheme. Failure to do so generally creates difficulties when the 
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scheme is applied to different flow problems with widely varying test conditions and grid- 
densities. An attempt is made here to derive the expressions for allowable time step for the present 
scheme from stability considerations. For convenience, let us start with the Navier-Stokes 
equations written in non-conservative form: 

(7) 
au au au au a2u a2u a w  azu a2u a2u 

at ax ay aZ a x 2  a y 2  a z 2  XYaXaY+GYZ-+Gzx-  ayaz azax - + A - + B - + C - = D - + E - + + - + G  - 

where U is the velocity vector and A, B, --- G,, are the coefficient matrices, their full form being 
available in Reference 16. 

Transforming these equations to the body-fitted curvilinear coordinate system t, 9 and 5, and 
making the thin-layer assumption, one gets 

(8) 
a2 u 

= cmx” + EsyZ + FsZ + Gx,s,sy + G y z s y s z  + G,xszrlxl - as2 
In general it is very difficult to derive an exact expression for the time step At, since the coefficient 
matrices are non-symmetric. Abarbanel and Gottlieb’ have delineated a procedure to sym- 
metrize all of these coefficient matrices simultaneously. Taking advantage of their work, and the 
property that the norm of a symmetric matrix equals its spectral radius, one can find an upper 
bound on At in the following manner: 

1 1 1 1  1 -a-+-+-+--- 
At At, At, At6 Atdiff (9) 

where, the first three terms on the right-hand side arise due to the convective terms and the last 
term is due to diffusion terms. Setting the bounds of these components of At equal to their 
respective spectral radii, we arrive at the following expressions for the convective terms: 

1 
->A,= I usx + w y  + wszl +cJ(sx” + s: + d,  
At, 

-2 A< = I 4 - x  + 05, + W5,l+ cJ(5f + r;: + t;:, 
A 4  

(1 1) 

(12) 
1 

where c is the speed of sound. The diffusion limit on the time step is obtained in a similar manner 
and is given by the relation 

For viscous flow problems, the most restrictive time step is in the boundary layer region near 
a solid surface, where At, and Atdiff are the most critical terms in determining the actual value of 
At. In order to get better understanding of the viscous time step limit, let us normalize the flow 
variables so that prcf =pm, pref = pm, Tref = T,, uref = J ( y p , / p m ) .  For the thin-layer approxima- 
tion, one obtains the following simplified expressions for the diffusion and convection limits near 
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the wall, 

We express these quantities in terms of far field data by using the normal shock relations. In the 
vicinity of strong shocks, p-+6M$/5, p-6 as M,+co. Therefore, 

2 7  M,J(r,2+vy2+,3 (17) 

For the thin-layer approximation one obtains the following simplified expression for the ratio 
of diffusion limit to the convection limit near the wall: 

Thus for fixed Reynolds number idiff/& - M i  on a given grid. This indicates that the diffusion 
time limit in the thin viscous layer near wall becomes more important than the convection limit as 
the Mach number is increased. It must also be realized that a finer mesh spacing is required as the 
Reynolds number is increased for a given Mach number flow, which makes the diffusion limit 
even more dominant (equations (16)-( 18)). 

MULTIGRID ACCELERATION TECHNIQUE 

The convergence acceleration due to the use of multigrid techniques has been demonstrated for 
both inviscid and viscous  flow^^*^* l3  in the transonic flow regimes. In the current application, the 
Full Approximation Storage (FAS) scheme of Brandt" is used in conjunction with the multigrid 
strategy devised by Jameson13 for the solution of the Euler equations. The extension of the 
scheme of Reference 13 to the three-dimensional thin-layer Navier-Stokes equations for tran- 
sonic flows described by Vatsa and Wedan' is used as a starting point for this work. A 5-stage 
Runge-Kutta scheme with coefficients selected to provide optimum damping of the high- 
frequency errors is employed. The restriction operator used to transfer the solution to a coarser 
grid is a volume-weighted average of the eight surrounding cell-centered values. The forcing 
function for a cell on the coarse grid is obtained by simply summing the residuals of its 
constituent fine-grid cells. The corrections are transferred from the coarse grid back to the fine 
grid (or prolonged) by simple trilinear interpolation in computational space. On highly stretched 
or non-uniform grids, this prolongation operator can introduce high-frequency errors back to the 
fine grid, causing degradation of the convergence rate. To prevent this, the coarse-grid corrections 
were processed through an implicit residual smoothing operator before adding to the fine-grid 
corrections. Whereas the smoothing of the coarse-grid corrections was certainly helpful for 
transonic flow calculations, it was found to be essential for obtaining converged solutions for 
higher speed flows. 

The solutions presented in this paper were obtained using a W-cycle, in which governing 
equations are solved only in the restriction step. The W-cycle resulted in approximately a 25 per 
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cent improvement in computational time compared to a standard I/-cycle for achieving compar- 
able convergence levels of the residuals. In addition, global properties such as lift and drag, 
develop more rapidly with the W-cycle, since more time is spent on the coarser grids. It was also 
found helpful to run more cycles on coarser grid levels for supersonic and hypersonic flows in 
order to better establish and precondition the flowfield before starting computations on the finest 
mesh in the Full Multigrid (FMG) cycle. 

The variab€e-coefficient residual smoothings were applied on all grid levels of the multigrid 
cycle. On the finest grid, the blend of second- and fourth-difference artificial dissipation discussed 
previously was employed. For the coarser grids, a fixed coefficient second-difference dissipation 
model has been found adequate for transonic flow comp~tations.~ However, the coarse-grid 
dissipation model had to be modified via a pressure gradient based TVD switch (see equations (5 )  
and (6)) to improve the convergence rate of the present scheme in supersonic and hypersonic flow 
regimes. 

RESULTS AND DISCUSSION 

Two test cases covering supersonic to low hypersonic speed regimes are chosen for testing the 
multigrid Navier-Stokes code described in the preceding paragraphs. The accuracy of the 
computed solutions is assessed via comparisons with available experimental data. In the present 
investigation, C-0 type grids are employed. The computational grids are generated so as to 
cluster points in the appropriate regions to resolve sharp gradients present therein. In addition, 
significant grid clustering is used in the thin region adjacent to the solid surface in order to resolve 
the thin shear layers present in high Reynolds number turbulent flows. 

Figure 1. Partial view of grid for conical frustum 
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Conical frustum entry configuration 

The first test case used for this study is a simple aerodynamic shape designed for entry at 
Mach 6. The configuration consists of a modified conical frustum" and is shown in Figure 1 ,  
along with the downstream and symmetry planes. This configuration evolved through a concep- 
tual study for the design of a vehicle to accommodate an 8-person crew, which could sustain 
a supersonic/hypersonic reentry and be capable of landing as a paraglider.' A wind tunnel model 
was tested at M ,  = 6.0 and Reynolds number of 0.8 x lo6 based on the model length. The 
Navier-Stokes calculations were performed on a grid consisting of 161 x 65 x 29 mesh points. The 
lift- and drag-coefficient data from the wind-tunnel tests are available for up to an angle of attack 
(a) of 12". The Navier-Stokes solutions spanning this entire angle-of-attack range have been 
obtained to assess the performance of the current scheme over such a large range of test 
conditions. 

The convergence history in terms of the residual error of the continuity equation and the lift 
coefficient, C1 for the a = 6" case are shown in Figure 2 as a function of work-units, where a work 
unit represents the computational effort required for one fine-mesh iteration. A total of 400 
iterations (620 work-units) were performed on the fine grid which resulted in approximately seven 
orders of reduction in the residual. The lift and drag coefficients for this case converged to within 
0.1 per cent of their final values in less than 50 he-grid iterations. The convergence histories for 
this series of test cases are similar to the a=6" case shown in Figure 2 except for the case of 
a = 12", for which the residual started oscillating after dropping approximately five orders, 
possibly due to slight unsteadiness. 

The computed lift and drag coefficients for a=O-l2" shown in Figure 3, are found to be in 
excellent agreement with the experimental data over the complete range of a. Thus, not only does 
the present scheme have good convergence properties for these test conditions, but in addition it 
produces accurate solutions that are in good quantitative agreement with the experimental data. 

A better understanding of the overall flow field is obtained by examining Figure 4, where the 
pressure contours for the a=6O case are shown on the symmetry and downstream planes, in 
addition to the body surface. One can clearly observe the nearly conical growth of the shock 
surface in the streamwise direction. In the crossflow direction, the distance between the shock and 
the body surface goes through a minimum near the tip and then increases towards both the 
windward and the leeward planes of symmetry. 
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Figure 2. Convergence history for conical frustum on 161 x 65 x 29 grid, M, = 6.0, a= 6", Rel =0.8 x lo6 
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Figure 3. Comparison of force coefficient for conical frustum, M ,  =6.0, Re,=0.8 x lo6 

Figure 4. Pressure contours for conical frustum, M ,  = 6.0, a = 6", Re, =0.8 x lo6 

High-speed civil transport 

The next test case considered here is that of the flow over a generic High-speed Civil Transport 
(HSCT) configuration designed to cruise at a Mach number, M ,  = 3.0. The conceptual develop- 
ment and geometric details of this highly blended wing/body configuration are available in 
Reference 19. A wind-tunnel model representative of this vehicle was tested over a large 
angle-of-attack range for several Mach numbers, and the experimental data from this study have 



EXTENSION OF MULTIGRID METHODOLOGY 

- 

- 

- 

- 

- 

833 

1.2 

1.0 

LL 

0 
.6 \ 

-I 
0 

.4 

-8 -I 

Figure 5. Partial view of grid for HSCT 
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Figure 6. Convergence history for HSCT on 145 x 65 x 73 grid, M, = 3.0, u = 5”, Re, = 6.3 x lo6 

been documented by Cove11 et dZ0 In the present study, we will concentrate on the M ,  = 3.0 
case, which was the design cruise Mach number for this configuration. The corresponding 
Reynolds number based on model length was 6.3 x lo6. 

A grid consisting of 145 x 65 x 73 nodes was generated for the Navier-Stokes calculations. 
A partial view of the mesh on the symmetry plane and several streamwise cuts is displayed in 
Figure 5. The outer boundaries of the grid were placed so as to contain the shock emanating from 
the leading-edge within the computational domain. Grid clustering in the tip, leading and 
trailing-edges are used to accurately resolve the flow in high-gradient regions. 
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Figure 7. Comparison of force coefficients for HSCT, M ,  = 3.0, Re, = 6.3 x lo6 
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Figure 8. Comparison of surface pressure distributions for HSCT, M, =3.0, a = Y ,  Re,=6.3 x lo6 

The convergence histories for the lift and residual of the continuity equation for the a= 5" are 
shown in Figure 6, which shows a reduction of three orders in the residual after 300 fine grid 
iterations (470 work units). The lift for this case converged after about 50 iterations. The 
convergence histories for the entire angle-of-attack range considered here (a = 0-8') are very 
similar to this case. The integrated lift and drag coefficients are compared with the experimental 
data of Reference 20 over the complete range of angle of attack in Figure 7. It is clear from this 
figure that the computed results are in very good agreement with the experimental data. This is 
very encouraging especially for drag prediction, since viscous drag, which is difficult to predict 
accurately, constitutes a significant part of the total drag for this configuration at Mach 3. 

Next we examine the detailed surface pressure distributions for this vehicle. For this purpose, 
we concentrate again on the a= 5" case for which experimental pressure data are available at 
selected streamwise and spanwise stations. Since the computational grid does not follow the cuts 
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along which experimental data was acquired, the computed pressure distributions had to be 
interpolated for a meaningful comparison. The interpolated solutions at two x-locations are 
compared with the experimental data in Figure 8. For the station x=  129, experimental pressures 
are available only on the upper surface, whereas both upper- and lower-surface pressures are 
available at the x = 171 station. The agreement with the measured pressure data at both of these 
stations is quite good. It is noted that the computed solutions predict the correct variation in 
pressure even in the vortex-dominated flow near the wing-tip region. Similar comparisons have 
also been obtained at a = 1" and CI = 3"; however these results are not shown here for conciseness. 

Whereas the global force coefficients and surface pressure comparisons are helpful in quantitat- 
ive validation of a prediction method, these flow properties are inadequate for understanding the 
true three-dimensional nature of the flow problem, such as the development of vortical-flow 
regions off the wing-tips. Following the lead of Reference 21, an attempt is made here to visualize 
the vortical flow by plotting the density contours at fixed x-locations. This is done in Figure 9 for 
x = 129 and x =  171, the same stations for which the surface pressure distributions were examined. 
The experimental laser sheet photographs, that are used routinely for visualizing shock and 

Figure 9. Flow-field visualization for HSCT, M ,  = 3.0, Rel = 6.3 x 10" 
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vortex formations are also shown in Figure 9 at the corresponding stations. The core of the vortex 
forming between the wing-tip and the fuselage and its feeding sheets are the most dominant flow 
structure visible in these figures. After a careful examination of these results, the following 
observations can be made. First, the core of the vortex is predicted to grow in size and lift off 
farther away from the surface as one moves downstream. Secondly, the overall shape and size of 
the vortex predicted by the Navier-Stokes calculations are in reasonably good agreement with 
the laser-sheet data. 

CONCLUDING REMARKS 

A multigrid acceleration technique developed originally for transonic flows has been extended to 
solve the three-dimensional Navier-Stokes equations for supersonic and hypersonic viscous 
flows. The convergence rate of the modified multigrid code for obtaining steady-state solutions of 
high Reynolds number viscous flows in the supersonic/hypersonic flow regimes (up to Mach 6), is 
comparable to the convergence rate in transonic flows. Convergence histories and detailed 
comparisons with the experimental data are presented for two problems of practical interest. 
Based on these solutions, it is concluded that the resulting code is capable of predicting 
high-speed viscous-flow problems in an efficient and reliable manner. 
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